enow.com Web Search

  1. Ads

    related to: generalization of a triangle practice equations problems and solutions video

Search results

  1. Results from the WOW.Com Content Network
  2. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    Langley's Adventitious Angles Solution to Langley's 80-80-20 triangle problem. Langley's Adventitious Angles is a puzzle in which one must infer an angle in a geometric diagram from other given angles. It was posed by Edward Mann Langley in The Mathematical Gazette in 1922. [1] [2]

  3. Fagnano's problem - Wikipedia

    en.wikipedia.org/wiki/Fagnano's_problem

    In geometry, Fagnano's problem is an optimization problem that was first stated by Giovanni Fagnano in 1775: For a given acute triangle determine the inscribed triangle of minimal perimeter . The solution is the orthic triangle , with vertices at the base points of the altitudes of the given triangle.

  4. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.

  5. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

  6. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    The next steps in the study of the Dirichlet's problem were taken by Karl Friedrich Gauss, William Thomson (Lord Kelvin) and Peter Gustav Lejeune Dirichlet, after whom the problem was named, and the solution to the problem (at least for the ball) using the Poisson kernel was known to Dirichlet (judging by his 1850 paper submitted to the ...

  7. Wallace–Bolyai–Gerwien theorem - Wikipedia

    en.wikipedia.org/wiki/Wallace–Bolyai–Gerwien...

    The proof of this theorem is constructive and doesn't require the axiom of choice, even though some other dissection problems (e.g. Tarski's circle-squaring problem) do need it. In this case, the decomposition and reassembly can actually be carried out "physically": the pieces can, in theory, be cut with scissors from paper and reassembled by hand.

  8. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension.

  9. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  1. Ads

    related to: generalization of a triangle practice equations problems and solutions video