Search results
Results from the WOW.Com Content Network
The item-total correlation approach is a way of identifying a group of questions whose responses can be combined into a single measure or scale. This is a simple approach that works by ensuring that, when considered across a whole population, responses to the questions in the group tend to vary together and, in particular, that responses to no individual question are poorly related to an ...
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal , ordinal , interval , and ratio .
Special cases of distributions where the scale parameter equals unity may be called "standard" under certain conditions. For example, if the location parameter equals zero and the scale parameter equals one, the normal distribution is known as the standard normal distribution, and the Cauchy distribution as the standard Cauchy distribution.
The following table classifies the various simple data types, associated distributions, permissible operations, etc. Regardless of the logical possible values, all of these data types are generally coded using real numbers, because the theory of random variables often explicitly assumes that they hold real numbers.
Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1] Assumptions, parametric and non-parametric: There are two groups of statistical tests, parametric and non-parametric. The choice between these two groups needs ...
Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.. For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.
For example, if a nominal variable has three categories (A, B, and C), two dummy variables would be created (for A and B) where C is the reference category, the nominal variable that serves as a baseline for variable comparison. [6] Another example of this is the use of indicator variable coding that assigns a numerical value of 0 or 1 to each ...