enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-form expression , [ 2 ] : 718 which takes linear time , rather than by expensive iterative approximation as used for many ...

  3. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    In terms of machine learning and pattern classification, the labels of a set of random observations can be divided into 2 or more classes. Each observation is called an instance and the class it belongs to is the label .

  4. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  5. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.

  6. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.

  7. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    Classic machine learning models like hidden Markov models, neural networks and newer models such as variable-order Markov models can be considered special cases of Bayesian networks. One of the simplest Bayesian Networks is the Naive Bayes classifier.

  8. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit , in the sense of distribution .

  9. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    In the repeated experiments, logistic regression and naive Bayes are applied here for different models on binary classification task, discriminative learning results in lower asymptotic errors, while generative one results in higher asymptotic errors faster. [3]