Search results
Results from the WOW.Com Content Network
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
Circle with square and octagon inscribed, showing area gap. Suppose that the area C enclosed by the circle is greater than the area T = cr/2 of the triangle. Let E denote the excess amount. Inscribe a square in the circle, so that its four corners lie on the circle. Between the square and the circle are four segments.
A circle with = is a degenerate case consisting of a single point. Sector: a region bounded by two radii of equal length with a common centre and either of the two possible arcs, determined by this centre and the endpoints of the radii. Segment: a region bounded by a chord and one of the arcs connecting the chord's endpoints. The length of the ...
Roundness is the measure of how closely the shape of an object approaches that of a mathematically perfect circle.Roundness applies in two dimensions, such as the cross sectional circles along a cylindrical object such as a shaft or a cylindrical roller for a bearing.
For mathematical objects in more dimensions, ... Digon – 2 sides; Triangle – 3 sides ... Circle. Archimedes' twin circles;
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
The circumference of a circle is the distance around it, but if, as in many elementary treatments, distance is defined in terms of straight lines, this cannot be used as a definition. Under these circumstances, the circumference of a circle may be defined as the limit of the perimeters of inscribed regular polygons as the number of sides ...