Search results
Results from the WOW.Com Content Network
Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space ...
Signal processing techniques are used to optimize transmissions, digital storage efficiency, correcting distorted signals, improve subjective video quality, and to detect or pinpoint components of interest in a measured signal.
A typical digital processing system. Digital signal processing (DSP) algorithms typically require a large number of mathematical operations to be performed quickly and repeatedly on a series of data samples. Signals (perhaps from audio or video sensors) are constantly converted from analog to digital, manipulated digitally, and then converted ...
A digital signal consists of a sequence of samples, which in this case are integers: 4, 5, 4, 3, 4, 6... In the context of digital signal processing (DSP), a digital signal is a discrete time, quantized amplitude signal. In other words, it is a sampled signal consisting of samples that take on values from a discrete set (a countable set that ...
In digital signal processing, downsampling, compression, and decimation are terms associated with the process of resampling in a multi-rate digital signal processing system. Both downsampling and decimation can be synonymous with compression , or they can describe an entire process of bandwidth reduction ( filtering ) and sample-rate reduction.
In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter , the analog filter , which is typically an electronic circuit operating on continuous-time analog signals .
Signal sampling representation. The continuous signal S(t) is represented with a green colored line while the discrete samples are indicated by the blue vertical lines. In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples".
Pipelining cannot decrease the processing time required for a single task. The advantage of pipelining is that it increases the throughput of the system when processing a stream of tasks. Applying too many pipelined functions can lead to increased latency - that is, the time required for a single task to propagate through the full pipe is ...