enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Immersion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Immersion_(mathematics)

    A mathematical rose with k petals is an immersion of the circle in the plane with a single k-tuple point; k can be any odd number, but if even must be a multiple of 4, so the figure 8, with k = 2, is not a rose. The Klein bottle, and all other non-orientable closed surfaces, can be immersed in 3-space but not embedded.

  3. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  4. Nash embedding theorems - Wikipedia

    en.wikipedia.org/wiki/Nash_embedding_theorems

    The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    This is a list of formulas encountered in Riemannian geometry. Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.

  6. Homotopy principle - Wikipedia

    en.wikipedia.org/wiki/Homotopy_principle

    In mathematics, the homotopy principle (or h-principle) is a very general way to solve partial differential equations (PDEs), and more generally partial differential relations (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as the immersion problem, isometric immersion problem, fluid dynamics, and other areas.

  7. Boy's surface - Wikipedia

    en.wikipedia.org/wiki/Boy's_surface

    An animation of Boy's surface. In geometry, Boy's surface is an immersion of the real projective plane in three-dimensional space.It was discovered in 1901 by the German mathematician Werner Boy, who had been tasked by his doctoral thesis advisor David Hilbert to prove that the projective plane could not be immersed in three-dimensional space.

  8. images.huffingtonpost.com

    images.huffingtonpost.com/2013-03-04-GfKCustom...

    %PDF-1.5 %µµµµ 1 0 obj >>> endobj 2 0 obj > endobj 3 0 obj >/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 612 792] /Contents 4 0 R/Group >/Tabs/S ...

  9. Submersion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Submersion_(mathematics)

    In mathematics, a submersion is a differentiable map between differentiable manifolds whose differential is everywhere surjective. This is a basic concept in differential topology . The notion of a submersion is dual to the notion of an immersion .