Search results
Results from the WOW.Com Content Network
square number is 1 (solve the Diophantine equation x 2 = y 3 + 4y, where y is even); generalized pentagonal number is 171535 (solve the Diophantine equation x 2 = y 3 + 144y + 144, where y is divisible by 12); tetrahedral number is 2925. Note that 0 and 1 are the only normal magic constants of rational order which are also rational squares.
In the example below, the left square is the original square, while the right square is the new square obtained by this transformation. In the middle square, rows 1 and 2 and rows 3 and 4 have been swapped. The final square on the right is obtained by interchanging columns 1 and 2 and columns 3 and 4 of the middle square.
The sum of the labels is 11, smaller than could be achieved using only two labels. In graph theory, a sum coloring of a graph is a labeling of its vertices by positive integers, with no two adjacent vertices having equal labels, that minimizes the sum of the labels. The minimum sum that can be achieved is called the chromatic sum of the graph. [1]
Add the clues together, plus 1 for each "space" in between. For example, if the clue is 6 2 3, this step produces the sum 6 + 1 + 2 + 1 + 3 = 13. Subtract this number from the total available in the row (usually the width or height of the puzzle). For example, if the clue in step 1 is in a row 15 cells wide, the difference is 15 - 13 = 2.
Again, the last number of a row represents the number of new vertices to be added to generate the next higher n-cube. In this triangle, the sum of the elements of row m is equal to 3 m. Again, to use the elements of row 4 as an example: 1 + 8 + 24 + 32 + 16 = 81, which is equal to =.
Essence Atkins Says Showing Up for Tia Mowry amid Her Divorce from Cory Hardrict Is 'an Honor' (Exclusive)
24/7 Help. For premium support please call: 800-290-4726 more ways to reach us. Mail. Sign in. ... That's because the average number of bowel movements a day can vary by person, Dr. Ibrahim ...
The smallest number of colors needed to color a graph G is called its chromatic number, and is often denoted χ(G). Sometimes γ(G) is used, since χ(G) is also used to denote the Euler characteristic of a graph. A graph that can be assigned a (proper) k-coloring is k-colorable, and it is k-chromatic if its chromatic number is exactly k.