enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit function - Wikipedia

    en.wikipedia.org/wiki/Implicit_function

    It is impossible to algebraically express y explicitly as a function of x, and therefore one cannot finddy / dx ⁠ by explicit differentiation. Using the implicit method, ⁠ dy / dx ⁠ can be obtained by differentiating the equation to obtain =, where ⁠ dx / dx ⁠ = 1. Factoring out ⁠ dy / dx ⁠ shows that =, which yields the result

  3. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  4. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    Using implicit differentiation and then solving for dy/dx, the derivative of the inverse function is found in terms of y. To convert dy/dx back into being in terms of x, we can draw a reference triangle on the unit circle, letting θ be y.

  5. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    D-notation leaves implicit the variable with respect to which differentiation is being done. However, this variable can also be made explicit by putting its name as a subscript: if f is a function of a variable x, this is done by writing [6] for the first derivative, for the second derivative,

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  7. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    Express dc/dt using chain rule in terms of dx/dt and dy/dt; Substitute in x, y, dx/dt, dy/dt; Simplify. Choose coordinate system: Let the y-axis point North and the x-axis point East. Identify variables: Define y(t) to be the distance of the vehicle heading North from the origin and x(t) to be the distance of the vehicle heading West from the ...

  8. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Another common notation for differentiation is by using the prime mark in the symbol of a function ⁠ ⁠. This is known as prime notation , due to Joseph-Louis Lagrange . [ 22 ] The first derivative is written as ⁠ f ′ ( x ) {\displaystyle f'(x)} ⁠ , read as " ⁠ f {\displaystyle f} ⁠ prime of ⁠ x {\displaystyle x} ⁠ , or ⁠ y ...