Search results
Results from the WOW.Com Content Network
An example of this crystallization process is the production of Glauber's salt, a crystalline form of sodium sulfate. In the diagram, where equilibrium temperature is on the x-axis and equilibrium concentration (as mass percent of solute in saturated solution) in y-axis , it is clear that sulfate solubility quickly decreases below 32.5 °C.
Crystallization from solution may result in the highest degree of polymer crystallinity. For example, highly linear polyethylene can form platelet-like single crystals with a thickness on the order 10–20 nm when crystallized from a dilute solution.
For other solvents of crystallization, analysis is conveniently accomplished by dissolving the sample in a deuterated solvent and analyzing the sample for solvent signals by NMR spectroscopy. Single crystal X-ray crystallography is often able to detect the presence of these solvents of crystallization as well.
An example of such texture, related to fractioned crystallization, is intergranular (also known as intercumulus) textures that develop wherever a mineral crystallizes later than the surrounding matrix, hence filling the left-over interstitial space. Various oxides of chromium, iron and titanium show such textures, such as intergranular chromite ...
For example, crystals of galena often take the shape of cubes, and the six faces of the cube belong to a crystallographic form that displays one of the symmetries of the isometric crystal system. Galena also sometimes crystallizes as octahedrons, and the eight faces of the octahedron belong to another crystallographic form reflecting a ...
In chemistry, fractional crystallization is a stage-wise separation technique that relies on the liquid–solid phase change. This technique fractionates via differences in crystallization temperature and enables the purification of multi-component mixtures, as long as none of the constituents can act as solvents to the others. Due to the high ...
As such, powder diffraction techniques, which take diffraction patterns of samples with a large number of crystals, play an important role in structural determination. Other physical properties are also linked to crystallography. For example, the minerals in clay form small, flat, platelike structures. Clay can be easily deformed because the ...
Developing protein crystals is a difficult process influenced by many factors, including pH, temperature, ionic strength in the crystallization solution, and even gravity. [3] Once formed, these crystals can be used in structural biology to study the molecular structure of the protein, particularly for various industrial or medical purposes. [4 ...