Search results
Results from the WOW.Com Content Network
In the C++ programming language, argument-dependent lookup (ADL), or argument-dependent name lookup, [1] applies to the lookup of an unqualified function name depending on the types of the arguments given to the function call. This behavior is also known as Koenig lookup, as it is often attributed to Andrew Koenig, though he is not its inventor ...
Notice that the type of the result can be regarded as everything past the first supplied argument. This is a consequence of currying, which is made possible by Haskell's support for first-class functions; this function requires two inputs where one argument is supplied and the function is "curried" to produce a function for the argument not supplied.
Evaluation of this function might be represented as (,). Note that the result of partial function application in this case is a function that takes two arguments. Partial application is sometimes incorrectly called currying, which is a related, but distinct concept.
[2] In C++, the C++20 revision adds the spaceship operator <=>, which returns a value that encodes whether the 2 values are equal, less, greater, or unordered and can return different types depending on the strictness of the comparison. [3] The name's origin is due to it reminding Randal L. Schwartz of the spaceship in an HP BASIC Star Trek ...
Function overloading is usually associated with statically-typed programming languages that enforce type checking in function calls. An overloaded function is a set of different functions that are callable with the same name. For any particular call, the compiler determines which overloaded function to use and resolves this at compile time ...
In theoretical computer science, currying provides a way to study functions with multiple arguments in very simple theoretical models, such as the lambda calculus, in which functions only take a single argument. Consider a function (,) taking two arguments, and having the type (), which should be understood to mean that x must have the type , y ...
It is impossible in general to distinguish between a function partly applied, and a function to which a subset of parameters have been provided. OCaml resolves this ambiguity by requiring a positional argument after all optional named-parameter arguments: its presence or absence is used to decide if the function has been fully or partly applied.
In computer programming, a function object [a] is a construct allowing an object to be invoked or called as if it were an ordinary function, usually with the same syntax (a function parameter that can also be a function). In some languages, particularly C++, function objects are often called functors (not related to the functional programming ...