Search results
Results from the WOW.Com Content Network
] Triazolam is a short-acting benzodiazepine, is lipophilic, and is metabolised hepatically via oxidative pathways. The main pharmacological effects of triazolam are the enhancement of the neurotransmitter GABA at the GABA A receptor. [30] The half-life of triazolam is only 2 hours making it a very short acting benzodiazepine drug. [31]
Clearance of a substance is sometimes expressed as the inverse of the time constant that describes its removal rate from the body divided by its volume of distribution (or total body water). In steady-state, it is defined as the mass generation rate of a substance (which equals the mass removal rate) divided by its concentration in the blood .
Clearance is therefore expressed as the plasma volume totally free of the drug per unit of time, and it is measured in units of volume per units of time. Clearance can be determined on an overall, organism level («systemic clearance») or at an organ level (hepatic clearance, renal clearance etc.). The equation that describes this concept is:
Dahmer was prescribed Halcion, a sedative that contains the drug triazolam, by a physician to help with his sleeping issues, according to a study by The New School Psychology Bulletin. At the time ...
Polonium in the body has a biological half-life of about 30 to 50 days. Caesium in the body has a biological half-life of about one to four months. Mercury (as methylmercury) in the body has a half-life of about 65 days. Lead in the blood has a half life of 28–36 days. [29] [30] Lead in bone has a biological half-life of about ten years.
Pharmacokinetics (from Ancient Greek pharmakon "drug" and kinetikos "moving, putting in motion"; see chemical kinetics), sometimes abbreviated as PK, is a branch of pharmacology dedicated to describing how the body affects a specific substance after administration. [1]
The last image we have of Patrick Cagey is of his first moments as a free man. He has just walked out of a 30-day drug treatment center in Georgetown, Kentucky, dressed in gym clothes and carrying a Nike duffel bag.
And since is fraction of the drug that is removed per unit time measured at any particular instant, then if we divide the rate of elimination by the amount of drug in the body at time t, we get; K = d E t d t ÷ A t = ln 2 t 1 / 2 ≈ 0.693 t 1 / 2 {\displaystyle K={dE_{t} \over dt}\div A_{t}={\frac {\ln 2}{t_{1/2}}}\approx {\frac {0.693}{t ...