Search results
Results from the WOW.Com Content Network
Autonomic nervous system, showing splanchnic nerves in middle, and the vagus nerve as "X" in blue. The heart and organs below in list to right are regarded as viscera. The autonomic nervous system has been classically divided into the sympathetic nervous system and parasympathetic nervous system only (i.e., exclusively motor).
In the abdomen, general visceral afferent fibers usually accompany sympathetic efferent fibers. This means that a signal traveling in an afferent fiber will begin at sensory receptors in the afferent fiber's target organ, travel up to the ganglion where the sympathetic efferent fiber synapses, continue back along a splanchnic nerve from the ganglion into the sympathetic trunk, move into a ...
The muscular system is an organ system consisting of skeletal, smooth, and cardiac muscle. It permits movement of the body, maintains posture, and circulates blood throughout the body. [1] The muscular systems in vertebrates are controlled through the nervous system although some muscles (such as the cardiac muscle) can be
Human nervous system – the part of the human body that coordinates a person's voluntary and involuntary actions and transmits signals between different parts of the body. The human nervous system consists of two main parts: the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS contains the brain and spinal cord.
They have a minimal effect on the contractile forces of the ventricular muscle due to sparse innervation of the ventricles from the parasympathetic nervous system. The M3 muscarinic receptors are located at many places in the body, such as the endothelial cells of blood vessels, as well as the lungs causing bronchoconstriction.
The autonomic nervous system (ANS) controls involuntary responses to regulate physiological functions. [8] The brain and spinal cord of the central nervous system are connected with organs that have smooth muscle, such as the heart, bladder, and other cardiac, exocrine, and endocrine related organs, by ganglionic neurons. [8]
The vasomotor center is a collection of integrating neurons in the medulla oblongata of the middle brain stem.The term "vasomotor center" is not truly accurate, since this function relies not on a single brain structure ("center") but rather represents a network of interacting neurons.
The cells of the neurovascular unit also make up the blood–brain barrier (BBB), which plays an important role in maintaining the microenvironment of the brain. [11] In addition to regulating the exit and entrance of blood, the blood–brain barrier also filters toxins that may cause inflammation, injury, and disease. [12]