Search results
Results from the WOW.Com Content Network
S = Hydraulic slope; h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
Because hydraulic calculations for gridded systems require an iterative process to balance the water flow through all possible water paths, these calculations are most often performed by computer software. In practice, most calculations on all types of piping networks are performed by computer software.
D i is the outside diameter of the inner pipe. For calculation involving flow in non-circular ducts, the hydraulic diameter can be substituted for the diameter of a circular duct, with reasonable accuracy, if the aspect ratio AR of the duct cross-section remains in the range 1 / 4 < AR < 4. [11]
In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.
The following table gives Reynolds number Re, Darcy friction factor f D, flow rate Q, and velocity V such that hydraulic slope S = h f / L = 0.01, for a variety of nominal pipe (NPS) sizes. Volumetric Flow Q where Hydraulic Slope S is 0.01, for selected Nominal Pipe Sizes (NPS) in PVC [ 14 ] [ 15 ]