Search results
Results from the WOW.Com Content Network
where () = =, …, and () =, …, are constraints that are required to be satisfied (these are called hard constraints), and () is the objective function that needs to be optimized subject to the constraints. In some problems, often called constraint optimization problems, the objective function is actually the sum of cost functions, each of ...
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have ...
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.
Sequential quadratic programming: A Newton-based method for small-medium scale constrained problems. Some versions can handle large-dimensional problems. Interior point methods: This is a large class of methods for constrained optimization, some of which use only (sub)gradient information and others of which require the evaluation of Hessians.
If the objective function is concave (maximization problem), or convex (minimization problem) and the constraint set is convex, then the program is called convex and general methods from convex optimization can be used in most cases. If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used.
The classic model of Constraint Satisfaction Problem defines a model of static, inflexible constraints. This rigid model is a shortcoming that makes it difficult to represent problems easily. [ 33 ] Several modifications of the basic CSP definition have been proposed to adapt the model to a wide variety of problems.
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]