enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ...

  3. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    The bfloat16 (brain floating point) [1] [2] floating-point format is a computer number format occupying 16 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. This format is a shortened (16-bit) version of the 32-bit IEEE 754 single-precision floating-point format (binary32) with the ...

  4. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    JavaScript: as of ES2020, BigInt is supported in most browsers; [2] the gwt-math library provides an interface to java.math.BigDecimal, and libraries such as DecimalJS, BigInt and Crunch support arbitrary-precision integers. Julia: the built-in BigFloat and BigInt types provide arbitrary-precision floating point and integer arithmetic respectively.

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...

  6. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    Additionally, they are frequently encountered as a pedagogical tool in computer-science courses to demonstrate the properties and structures of floating-point arithmetic and IEEE 754 numbers. Minifloats with 16 bits are half-precision numbers (opposed to single and double precision). There are also minifloats with 8 bits or even fewer. [2]

  7. Unum (number format) - Wikipedia

    en.wikipedia.org/wiki/Unum_(number_format)

    The format of an n-bit posit is given a label of "posit" followed by the decimal digits of n (e.g., the 16-bit posit format is "posit16") and consists of four sequential fields: sign: 1 bit, representing an unsigned integer s; regime: at least 2 bits and up to (n − 1), representing an unsigned integer r as described below

  8. Mixed-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Mixed-precision_arithmetic

    A common usage of mixed-precision arithmetic is for operating on inaccurate numbers with a small width and expanding them to a larger, more accurate representation. For example, two half-precision or bfloat16 (16-bit) floating-point numbers may be multiplied together to result in a more accurate single-precision (32-bit) float. [1]

  9. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For floating-point arithmetic, the mantissa was restricted to a hundred digits or fewer, and the exponent was restricted to two digits only. The largest memory supplied offered 60 000 digits, however Fortran compilers for the 1620 settled on fixed sizes such as 10, though it could be specified on a control card if the default was not satisfactory.