Search results
Results from the WOW.Com Content Network
Inhibitory control, also known as response inhibition, is a cognitive process – and, more specifically, an executive function – that permits an individual to inhibit their impulses and natural, habitual, or dominant behavioral responses to stimuli (a.k.a. prepotent responses) in order to select a more appropriate behavior that is consistent with completing their goals.
Process efficiency can be enhanced by reducing the margins necessary to ensure product specifications are met. [11] This can be done by improving the control of the process to minimize the effect of disturbances on the process. The efficiency is improved in a two step method of narrowing the variance and shifting the target. [11]
To illustrate, let us refer once more to a formalized social system in which deviant behavior is controlled through a process of observed violation of the existing law (sensing), court hearings and trials (comparison with standard), incarceration when the accused is found guilty (correction), and release from custody after rehabilitation of the ...
Some process control schemes and final control elements require this reverse action. An example would be a valve for cooling water, where the fail-safe mode, in the case of signal loss, would be 100% opening of the valve; therefore 0% controller output needs to cause 100% valve opening.
In open-loop control, the control action from the controller is independent of the "process output" (or "controlled process variable"). A good example of this is a central heating boiler controlled only by a timer, so that heat is applied for a constant time, regardless of the temperature of the building.
Ironic process theory (IPT), also known as the Pink elephant paradox [1] or White bear phenomenon, suggests that when an individual intentionally tries to avoid thinking a certain thought or feeling a certain emotion, a paradoxical effect is produced: the attempted avoidance not only fails in its object but in fact causes the thought or emotion to occur more frequently and more intensely. [2]
Control charts are graphical plots used in production control to determine whether quality and manufacturing processes are being controlled under stable conditions. (ISO 7870-1) [1] The hourly status is arranged on the graph, and the occurrence of abnormalities is judged based on the presence of data that differs from the conventional trend or deviates from the control limit line.
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).