Search results
Results from the WOW.Com Content Network
Nonsense mutations code for a premature stop codon which causes the protein to be shortened. The truncated protein may or may not be functional, depending on the severity of what is not translated. In human genetics, NMD has the possibility to not only limit the translation of abnormal proteins, but it can occasionally cause detrimental effects ...
In bacteria, the coding regions typically take up 88% of the genome. [1] The remaining 12% does not encode proteins, but much of it still has biological function through genes where the RNA transcript is functional (non-coding genes) and regulatory sequences, which means that almost all of the bacterial genome has a function. [1]
The genetic mutation that leads to Becker muscular dystrophy is an in-frame deletion. This means that, out of the 79 exons that code for dystrophin, one or several in the middle may be removed, without affecting the exons that follow the deletion. This allows for a shorter-than-normal dystrophin protein that maintains a degree of functionality.
The split gene theory is a theory of the origin of introns, long non-coding sequences in eukaryotic genes between the exons. [1] [2] [3] The theory holds that the randomness of primordial DNA sequences would only permit small (< 600bp) open reading frames (ORFs), and that important intron structures and regulatory sequences are derived from stop codons.
By comparing sequences with and without the splice site mutation, investigators were able to determine that a G-to-C nucleotide transversion occurs at the last position of the first intron. This transversion occurs in the region that codes for the cystatin B gene.
The different types of splicing mutations in genes. Mutations within the splicing regions of genes can lead to a defective transcript and protein. Depending on where exactly the mutation occurs and which "cryptic" splice site near the original site is chosen for splicing, the specific defect in the transcript and protein will vary.
Alternative splicing produces three protein isoforms.Protein A includes all of the exons, whereas Proteins B and C result from exon skipping.. Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to produce different splice variants.
In order to provide a good minigene model, the gene fragment should have all of the necessary elements to ensure it exhibits the same alternative splicing (AS) patterns as the wild type gene, i.e., the length of the fragment must include all upstream and downstream sequences which can affect its splicing.