Search results
Results from the WOW.Com Content Network
Complex modulus may refer to: Modulus of complex number , in mathematics, the norm or absolute value, of a complex number: | x + i y | = x 2 + y 2 {\displaystyle |x+iy|={\sqrt {x^{2}+y^{2}}}} Dynamic modulus , in materials engineering, the ratio of stress to strain under vibratory conditions
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a ...
A split-complex number has two real number components x and y, and is written = +. The conjugate of z is =. ... The squared modulus of a split-complex number = + ...
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
Modulus, the absolute value of a real or complex number ( | a |) Moduli space, in mathematics a geometric space whose points represent algebro-geometric objects; Conformal modulus, a measure of the size of a curve family; Modulus of continuity, a function gauging the uniform continuity of a function; Similarly, the modulus of a Dirichlet character
Bicomplex numbers form an algebra over C of dimension two, and since C is of dimension two over R, the bicomplex numbers are an algebra over R of dimension four. In fact the real algebra is older than the complex one; it was labelled tessarines in 1848 while the complex algebra was not introduced until 1892.
Given a Gaussian integer z 0, called a modulus, two Gaussian integers z 1,z 2 are congruent modulo z 0, if their difference is a multiple of z 0, that is if there exists a Gaussian integer q such that z 1 − z 2 = qz 0. In other words, two Gaussian integers are congruent modulo z 0, if their difference belongs to the ideal generated by z 0.