enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions ( theorems ) from these.

  3. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.

  4. Erlangen program - Wikipedia

    en.wikipedia.org/wiki/Erlangen_program

    In particular, Euclidean geometry was more restrictive than affine geometry, which in turn is more restrictive than projective geometry. Klein proposed that group theory , a branch of mathematics that uses algebraic methods to abstract the idea of symmetry , was the most useful way of organizing geometrical knowledge; at the time it had already ...

  5. Euclid - Wikipedia

    en.wikipedia.org/wiki/Euclid

    Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.

  6. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    A regular n-gon has a solid construction if and only if n=2 a 3 b m where a and b are some non-negative integers and m is a product of zero or more distinct Pierpont primes (primes of the form 2 r 3 s +1). Therefore, regular n-gon admits a solid, but not planar, construction if and only if n is in the sequence

  7. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    The rigorous deductive methods of geometry found in Euclid's Elements of Geometry were relearned, and further development of geometry in the styles of both Euclid (Euclidean geometry) and Khayyam (algebraic geometry) continued, resulting in an abundance of new theorems and concepts, many of them very profound and elegant.

  8. Divine Proportions: Rational Trigonometry to Universal Geometry

    en.wikipedia.org/wiki/Divine_Proportions:...

    Michael Henle calls the extension of triangle and conic section geometry to finite fields, in part III of the book, "an elegant theory of great generality", [4] and William Barker also writes approvingly of this aspect of the book, calling it "particularly novel" and possibly opening up new research directions. [6]

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described (although non-rigorously by modern standards) in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these.