enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of ′ is the second derivative, denoted as ⁠ ″ ⁠, and the derivative of ″ is the third derivative, denoted as ⁠ ‴ ⁠. By continuing this process, if it exists, the ⁠ n {\displaystyle n} ⁠ th derivative is the derivative of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ th derivative or the derivative of order ...

  4. In the discrete case, the standard central difference approximation of the second derivative is used on a uniform grid. These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables , as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid ...

  5. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.

  6. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the ...

  7. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    When viewed as a distribution the second partial derivative's values can be changed at an arbitrary set of points as long as this has Lebesgue measure 0. Since in the example the Hessian is symmetric everywhere except (0, 0) , there is no contradiction with the fact that the Hessian, viewed as a Schwartz distribution , is symmetric.

  8. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  9. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A cubic function is concave (left half) when its first derivative (red) is monotonically decreasing i.e. its second derivative (orange) is negative, and convex (right half) when its first derivative is monotonically increasing i.e. its second derivative is positive