Search results
Results from the WOW.Com Content Network
142857 × 7 4 = 342999657 342 + 999657 = 999999. If you square the last three digits and subtract the square of the first three digits, you also get back a cyclic permutation of the number. [citation needed] 857 2 = 734449 142 2 = 20164 734449 − 20164 = 714285. It is the repeating part in the decimal expansion of the rational number 1 / 7 ...
For example, in duodecimal, 1 / 2 = 0.6, 1 / 3 = 0.4, 1 / 4 = 0.3 and 1 / 6 = 0.2 all terminate; 1 / 5 = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; 1 / 7 = 0. 186A35 has period 6 in duodecimal, just as it does in decimal.
The Bernoulli numbers can be expressed in terms of the Riemann zeta function as B n = −nζ(1 − n) for integers n ≥ 0 provided for n = 0 the expression −nζ(1 − n) is understood as the limiting value and the convention B 1 = 1 / 2 is used. This intimately relates them to the values of the zeta function at negative integers.
Of particular interest are the quater-imaginary base (base 2i) and the base −1 ± i systems discussed below, both of which can be used to finitely represent the Gaussian integers without sign. Base −1 ± i, using digits 0 and 1, was proposed by S. Khmelnik in 1964 [3] and Walter F. Penney in 1965. [4] [6]
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
Interviewing his students to determine why the vast majority initially rejected the equality, he found that "students continued to conceive of 0.999... as a sequence of numbers getting closer and closer to 1 and not a fixed value, because 'you haven't specified how many places there are' or 'it is the nearest possible decimal below 1 ' ". [23]
Arithmetic values thought to have been represented by parts of the Eye of Horus. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions (not related to the binary number system) and Horus-Eye fractions (so called because many historians of mathematics believe that the symbols used for this system could be arranged to form the eye of Horus, although this ...