enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  3. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    The unit of momentum is the product of the units of mass and velocity. In SI units, if the mass is in kilograms and the velocity is in meters per second then the momentum is in kilogram meters per second (kg⋅m/s). In cgs units, if the mass is in grams and the velocity in centimeters per second, then the momentum is in gram centimeters per ...

  4. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    When flow velocity is doubled, for example, not only does the fluid strike with twice the flow velocity, but twice the mass of fluid strikes per second. Therefore, the change of momentum per time, i.e. the force experienced, is multiplied by four.

  5. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...

  7. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    F is the resultant force applied, t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.

  8. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    In particle accelerators, velocity can be very high (close to the speed of light in vacuum) so the same rest mass now exerts greater inertia (relativistic mass) thereby requiring greater force for the same centripetal acceleration, so the equation becomes: [11] = where = is the Lorentz factor.

  9. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation is the sum of two force components: an inertia force in phase with the local flow acceleration and a drag force proportional to the (signed) square of the instantaneous flow velocity. The inertia force is of the functional form as found in potential flow theory, while the drag force has the form as found for a body placed ...