Search results
Results from the WOW.Com Content Network
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
the dissociation constant K d is the ratio of dissociated to undissociated compound = [] [] [] where the brackets denote the equilibrium concentrations of the species
Stepwise dissociation constants are each defined for the loss of a single proton. The constant for dissociation of the first proton may be denoted as K a1 and the constants for dissociation of successive protons as K a2, etc. Phosphoric acid, H 3 PO 4, is an example of a polyprotic acid as it can lose three protons.
is equal to the ratio of the dissociation rate of the ligand-receptor complex to its association rate (=). [8] Kd is the equilibrium constant for dissociation. K A {\textstyle K_{A}} is defined so that ( K A ) n = K d = k d k a {\textstyle (K_{A})^{n}=K_{\rm {d}}={k_{\rm {d}} \over k_{\rm {a}}}} , this is also known as the microscopic ...
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
The dissociation rate constant is defined using K off. [2] The Michaelis-Menten constant is denoted by K m and is represented by the equation K m = (K off + K cat)/ K on [definition needed]. The rates that the enzyme binds and dissociates from the substrate are represented by K on and K off respectively.
The degree of dissociation is the fraction of the original solute molecules that have dissociated. It is usually indicated by the Greek symbol α {\displaystyle \alpha } . There is a simple relationship between this parameter and the van 't Hoff factor.
The role of water in the association equilibrium is ignored as in all but the most concentrated solutions the activity of water is constant. K is defined here as an association constant, the reciprocal of an acid dissociation constant. Each activity term { } can be expressed as the product of a concentration [ ] and an activity coefficient γ ...