Ads
related to: how to order integers and numbers- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Teachers Try it Free
Search results
Results from the WOW.Com Content Network
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
Radix sort is an algorithm that sorts numbers by processing individual digits. n numbers consisting of k digits each are sorted in O(n · k) time. Radix sort can process digits of each number either starting from the least significant digit (LSD) or starting from the most significant digit (MSD). The LSD algorithm first sorts the list by the ...
In mathematics and computer science, the sorting numbers are a sequence of numbers introduced in 1950 by Hugo Steinhaus for the analysis of comparison sort algorithms. These numbers give the worst-case number of comparisons used by both binary insertion sort and merge sort. However, there are other algorithms that use fewer comparisons.
The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals.
In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [1]In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
The natural numbers form a subset of the integers. As there is no common standard for the inclusion or not of zero in the natural numbers, the natural numbers without zero are commonly referred to as positive integers, and the natural numbers with zero are referred to as non-negative integers.
Ads
related to: how to order integers and numbers