Search results
Results from the WOW.Com Content Network
A mode of vibration is characterized by a modal frequency and a mode shape. It is numbered according to the number of half waves in the vibration. For example, if a vibrating beam with both ends pinned displayed a mode shape of half of a sine wave (one peak on the vibrating beam) it would be vibrating in mode 1.
Mode conversion occurs when a wave encounters an interface between materials of different impedances and the incident angle is not normal to the interface. [1] Thus, for example, if a longitudinal wave from a fluid (e.g., water or air) strikes a solid (e.g., steel plate), it is usually refracted and reflected as a function of the angle of incidence, but if some of the energy causes particle ...
The Bessel function is unbounded for , which results in an unphysical solution to the vibrating drum head problem, so the constant must be null. We will also assume c 1 = 1 , {\displaystyle c_{1}=1,} as otherwise this constant can be absorbed later into the constants A {\displaystyle A} and B {\displaystyle B} coming from T ( t ...
A mode shape is assumed for the system, with two terms, one of which is weighted by a factor B, e.g. Y = [1, 1] + B[1, −1]. Simple harmonic motion theory says that the velocity at the time when deflection is zero, is the angular frequency ω {\displaystyle \omega } times the deflection (y) at time of maximum deflection.
3.1.2 Example: free–free ... Each of the displacement solutions is called a mode, ... These are equivalent boundary value problems, and both yield the solution
In structural engineering, modal analysis uses the overall mass and stiffness of a structure to find the various periods at which it will naturally resonate.These periods of vibration are very important to note in earthquake engineering, as it is imperative that a building's natural frequency does not match the frequency of expected earthquakes in the region in which the building is to be ...
These formulas provide the solution for the initial-value problem for the wave equation. They show that the solution at a given point P, given (t, x, y, z) depends only on the data on the sphere of radius ct that is intersected by the light cone drawn backwards from P. It does not depend upon data on the interior of this sphere.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.