enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constraint (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(mathematics)

    In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]

  3. Chance constrained programming - Wikipedia

    en.wikipedia.org/wiki/Chance_constrained_programming

    A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.

  4. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    with v the Lagrange multipliers on the non-negativity constraints, λ the multipliers on the inequality constraints, and s the slack variables for the inequality constraints. The fourth condition derives from the complementarity of each group of variables ( x , s ) with its set of KKT vectors (optimal Lagrange multipliers) being ( v , λ ) .

  5. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    The method penalizes violations of inequality constraints using a Lagrange multiplier, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem.

  6. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If the objective function and all of the hard constraints are linear and some hard constraints are inequalities, then the problem is a linear programming problem. This can be solved by the simplex method , which usually works in polynomial time in the problem size but is not guaranteed to, or by interior point methods which are guaranteed to ...

  7. Fritz John conditions - Wikipedia

    en.wikipedia.org/wiki/Fritz_John_conditions

    where ƒ is the function to be minimized, the inequality constraints and the equality constraints, and where, respectively, , and are the indices sets of inactive, active and equality constraints and is an optimal solution of , then there exists a non-zero vector = [,,, …,] such that:

  8. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. Similar to the Lagrange approach, the constrained maximization (minimization) problem is rewritten as a Lagrange function whose optimal point is a global maximum or minimum over the ...

  9. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    The equality constraint functions :, =, …,, are affine transformations, that is, of the form: () =, where is a vector and is a scalar. The feasible set C {\displaystyle C} of the optimization problem consists of all points x ∈ D {\displaystyle \mathbf {x} \in {\mathcal {D}}} satisfying the inequality and the equality constraints.