Search results
Results from the WOW.Com Content Network
Flight envelope is one of a number of related terms that are used in a similar fashion. It is perhaps the most common term because it is the oldest, first being used in the early days of test flight. It is closely related to more modern terms known as extra power and a doghouse plot which are different ways of describing the flight envelope of ...
This intersection is the coffin corner, or more formally the Q corner. [3] The above explanation is based on level, constant speed, flight with a given gross weight and load factor of 1.0 G. The specific altitudes and speeds of the coffin corner will differ depending on weight, and the load factor increases caused by banking and pitching maneuvers.
V A is the design maneuvering speed and is a calibrated airspeed.Maneuvering speed cannot be slower than and need not be greater than V c. [4]If is chosen by the manufacturer to be exactly the aircraft will stall in a nose-up pitching maneuver before the structure is subjected to its limiting aerodynamic load.
A sample CG-moment envelope chart, showing that a loaded plane weighing 2,367 lb (1,074 kg) with a moment of 105,200 lb⋅in (11886 N⋅m) is within the "normal category" envelope. Center of gravity (CG) is calculated as follows: Determine weights and arms for all mass within the aircraft. Multiply weights by arms for all mass to calculate moments.
An aeronautical chart is a map designed to assist in the navigation of aircraft, much as nautical charts do for watercraft, or a roadmap does for drivers. Using these charts and other tools, pilots are able to determine their position, safe altitude, best route to a destination, navigation aids along the way, alternative landing areas in case of an in-flight emergency, and other useful ...
Another factor that makes it impossible for some aircraft to reach their absolute ceiling, even with temporary increases in thrust, is the aircraft reaching the "coffin corner". Flight at the absolute ceiling is also not economically advantageous due to the low indicated airspeed which can be sustained: although the true airspeed at an altitude ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Energy–maneuverability theory is a model of aircraft performance. It was developed by Col. John Boyd, a fighter pilot, and Thomas P. Christie, a mathematician with the United States Air Force, [1] and is useful in describing an aircraft's performance as the total of kinetic and potential energies or aircraft specific energy.