Search results
Results from the WOW.Com Content Network
Common quantum logic gates by name (including abbreviation), circuit form(s) and the corresponding unitary matrices. In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits.
Arbitrary single-qubit phase shift gates () are natively available for transmon quantum processors through timing of microwave control pulses. [13] It can be explained in terms of change of frame. [14] [15] As with any single qubit gate one can build a controlled version of the phase shift gate.
Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations. A physical qubit is a physical device that behaves as a two-state quantum system, used as a component of a computer system.
The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.
The quantum logic gates are reversible unitary transformations on at least one qubit. Multiple qubits taken together are referred to as quantum registers. To define quantum gates, we first need to specify the quantum replacement of an n-bit datum. The quantized version of classical n-bit space {0,1} n is the Hilbert space
As of December 2023, the concept has been used to demonstrate a 48 logical qubit processor. [6] [7] To perform computation, the atoms are first trapped in a magneto-optical trap. [6] Qubits are then encoded in the energy levels of the atoms. Initialization and operation of the computer is performed via the application of lasers on the qubits. [8]
A qubit is a generalization of a bit (a system with two possible states) capable of occupying a quantum superposition of both states. A quantum gate, on the other hand, is a generalization of a logic gate describing the transformation of one or more qubits once a gate is applied given their initial state.
Quantum logic gates, building blocks for a quantum circuit in a quantum computer, operate on a set of qubits (a register); mathematically, the qubits undergo a unitary transformation described by multiplying the quantum gates unitary matrix with the quantum state vector. The result from this multiplication is a new quantum state vector.