Search results
Results from the WOW.Com Content Network
Features include mixed precision training, single-GPU, multi-GPU, and multi-node training as well as custom model parallelism. The DeepSpeed source code is licensed under MIT License and available on GitHub. [5] The team claimed to achieve up to a 6.2x throughput improvement, 2.8x faster convergence, and 4.6x less communication. [6]
SqueezeNet was originally described in SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. [1] AlexNet is a deep neural network that has 240 MB of parameters, and SqueezeNet has just 5 MB of parameters. This small model size can more easily fit into computer memory and can more easily be transmitted over a ...
They developed a set of 8,869 semantic relations and 10,675 syntactic relations which they use as a benchmark to test the accuracy of a model. When assessing the quality of a vector model, a user may draw on this accuracy test which is implemented in word2vec, [ 28 ] or develop their own test set which is meaningful to the corpora which make up ...
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
In both eager and graph executions, TensorFlow provides an API for distributing computation across multiple devices with various distribution strategies. [36] This distributed computing can often speed up the execution of training and evaluating of TensorFlow models and is a common practice in the field of AI. [36] [37]
Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation.It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8]
Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain .
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]