Search results
Results from the WOW.Com Content Network
The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS.The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM).
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior, atmosphere, and surrounding outer space) as X, Y, and Z measurements from its center of mass.
A geodetic datum or geodetic system (also: geodetic reference datum, geodetic reference system, or geodetic reference frame, or terrestrial reference frame) is a global datum reference or reference frame for unambiguously representing the position of locations on Earth by means of either geodetic coordinates (and related vertical coordinates) or geocentric coordinates. [1]
For example, a UTM coordinate based on a WGS84 realisation will be different than a UTM coordinate based on NAD27 for the same location. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation, although in certain situations a simple translation may be sufficient. [8]
The underlying geographic coordinates are defined using the WGS84 ellipsoidal model of the Earth's surface, but are projected as if defined on a sphere. [6] This practice is uncontroversial for small-scale maps (such as of the entire world), but has little precedent in large-scale maps (such as of a city or province).
Length of one degree (black), minute (blue) and second (red) of latitude and longitude in metric (upper half) and imperial units (lower half) at a given latitude (vertical axis) in WGS84. For example, the green arrows show that Donetsk (green circle) at 48°N has a Δ long of 74.63 km/° (1.244 km/min, 20.73 m/sec etc) and a Δ lat of 111.2 km ...
As noted above, the iterative solution to the inverse problem fails to converge or converges slowly for nearly antipodal points. An example of slow convergence is (Φ 1, L 1) = (0°, 0°) and (Φ 2, L 2) = (0.5°, 179.5°) for the WGS84 ellipsoid. This requires about 130 iterations to give a result accurate to 1 mm. Depending on how the inverse ...