Search results
Results from the WOW.Com Content Network
Meteorological data includes wind speeds which may be expressed as statute miles per hour, knots, or meters per second. Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note:
Wind speed on the Beaufort scale is based on the empirical relationship: [6] v = 0.836 B 3/2 m/s; v = 1.625 B 3/2 knots (=) where v is the equivalent wind speed at 10 metres above the sea surface and B is Beaufort scale number.
An anemometer is commonly used to measure wind speed. Global distribution of wind speed at 10m above ground averaged over the years 1981–2010 from the CHELSA-BIOCLIM+ data set [1] In meteorology, wind speed, or wind flow speed, is a fundamental atmospheric quantity caused by air moving from high to low pressure, usually due to changes in ...
The NWS office in Tulsa, Oklahoma, in conjunction with Oral Roberts University's mathematics department, published an approximation formula to the WBGT that takes into account cloud cover and wind speed; in limited experimentation (four samples), the office claimed the estimate was regularly accurate to within 0.5 °F (0.28 °C), even with a ...
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
10 kPa 1.5 psi Pressure increase per meter of a water column [26]: 10 kPa 1.5 psi Decrease in air pressure when going from Earth sea level to 1000 m elevation [citation needed]
Speed; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: metre per second: m/s m/s US spelling: meter per second 1.0 m/s (3.3 ft/s)
The wind speed in cyclonic circulation grows from zero as the radius increases and is always less than the geostrophic estimate. In the anticyclonic-circulation example, there is no wind within the distance of 260 km (point R*) – this is the area of no/low winds around a pressure high.