Search results
Results from the WOW.Com Content Network
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =
For the chi-squared distribution, only the positive integer numbers of degrees of freedom (circles) are meaningful. By the central limit theorem, because the chi-squared distribution is the sum of independent random variables with finite mean and variance, it converges to a normal distribution for large .
Graphs, results, and reports created by StatCrunch can be shared with other users, in addition to the sharing of data sets. [6] StatCrunch has a library of data transformation functions. StatCrunch can also recode and reorganize data. All data is stored in memory, and all processing happens on the client, so response is fast, even with large ...
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...
In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation ( MSWD ) in isotopic dating [ 1 ] and variance of unit weight in the context of weighted least squares .
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
The chi-square distribution has (k − c) degrees of freedom, where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one.