Search results
Results from the WOW.Com Content Network
String-like objects in relativistic theories, such as the strings used in some models of interactions between quarks, or those used in the modern string theory, also possess tension. These strings are analyzed in terms of their world sheet, and the energy is then typically proportional to the length of the string. As a result, the tension in ...
Vibration, standing waves in a string. The fundamental and the first 5 overtones in the harmonic series. A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone.
Mersenne's laws govern the construction and operation of string instruments, such as pianos and harps, which must accommodate the total tension force required to keep the strings at the proper pitch. Lower strings are thicker, thus having a greater mass per length. They typically have lower tension. Guitars are a familiar exception to this ...
String theory is a theoretical framework that attempts to address these questions and many others. The starting point for string theory is the idea that the point-like particles of particle physics can also be modeled as one-dimensional objects called strings. String theory describes how strings propagate through space and interact with each other.
An appealing feature of string theory is that fundamental particles can be viewed as excitations of the string. The tension in a string is on the order of the Planck force (10 44 newtons). The graviton (the proposed messenger particle of the gravitational force) is predicted by the theory to be a string with wave amplitude zero.
A model of Melde's experiment: an electric vibrator connected to a cable drives a pulley that suspends a mass that causes tension in the cable. Melde's experiment is a scientific experiment carried out in 1859 by the German physicist Franz Melde on the standing waves produced in a tense cable originally set oscillating by a tuning fork , later ...
The bob has mass m and is suspended by a string of length L. The tension force of the string acting on the bob is the vector T, and the bob's weight is the vector mg. Since there is no acceleration in the vertical direction, the vertical component of the tension in the string is equal and opposite to the weight of the bob:
All strings have some tension, against which one must pull to lengthen the object; this pull does work on the string, adding to its energy. Because string theories are by nature relativistic, adding energy to a string is equivalent to adding mass, by Einstein's relation E = mc 2. Therefore, the separation between D-branes controls the minimum ...