enow.com Web Search

  1. Ads

    related to: infinite decimal fractions
  2. generationgenius.com has been visited by 100K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    Conversely the period of the repeating decimal of a fraction ⁠ c / d ⁠ will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction ⁠ 2 / 7 ⁠ has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857. The period of the fraction ⁠ 2 / 7 ⁠ is ...

  3. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite .

  4. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.

  5. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational number. The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy.

  6. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.

  7. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    The Archimedean property: any point x before the finish line lies between two of the points P n (inclusive).. It is possible to prove the equation 0.999... = 1 using just the mathematical tools of comparison and addition of (finite) decimal numbers, without any reference to more advanced topics such as series and limits.

  8. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Moreover, in the standard decimal representation of , an infinite sequence of trailing 0's appearing after the decimal point is omitted, along with the decimal point itself if is an integer. Certain procedures for constructing the decimal expansion of x {\displaystyle x} will avoid the problem of trailing 9's.

  9. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Decimal numbers, while arguably more useful to work with when performing calculations, sometimes lack the precision that common fractions have. Sometimes an infinite repeating decimal is required to reach the same precision. Thus, it is often useful to convert repeating decimals into fractions.

  1. Ads

    related to: infinite decimal fractions