Search results
Results from the WOW.Com Content Network
Humans can consume a variety of carbohydrates, digestion breaks down complex carbohydrates into simple monomers (monosaccharides): glucose, fructose, mannose and galactose. After resorption in the gut , the monosaccharides are transported, through the portal vein , to the liver, where all non-glucose monosacharids (fructose, galactose) are ...
l-Glucose is an organic compound with formula C 6 H 12 O 6 or O=CH[CH(OH)] 5 H, specifically one of the aldohexose monosaccharides. As the l-isomer of glucose, it is the enantiomer of the more common d-glucose. l-Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory.
As a result of having similar properties, both of these enzymes work together in the small intestine in order to convert consumed starch into glucose for metabolic energy. The difference between these two enzymes is that maltase-glucoamylase has a specific activity at the 1-4 linkage of sugar, where at SI has a specific activity at the 1-6 linkage.
GLUT4 has a Km value for glucose of about 5 mM, which as stated above is the normal blood glucose level in healthy individuals. GLUT4 is the most abundant glucose transporter in skeletal muscle and is thus considered to be rate limiting for glucose uptake and metabolism in resting muscles. [ 8 ]
The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion (the tongue, salivary glands, pancreas, liver, and gallbladder). Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body.
The following are genes that can code for maltase: Acid alpha-glucosidase which is coded on the GAA gene is essential to breakdown complex sugars called Glycogen into glucose. Maltase-glucoamylase which is coded on the MGAM gene plays a role in the digestion of starches. It is due to this enzyme in humans that starches of plant origin are able ...
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
The hydrolysis of trehalose into glucose takes place in the periplasm, and the glucose is then transported into the bacterial cell. Another cytoplasmic trehalase has also been reported from E. coli. The gene, which encodes this cytoplasmic trehalase, exhibits high homology to the periplasmic trehalase.