enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    The fact that a reaction is thermodynamically possible does not mean that it will actually occur. A mixture of hydrogen gas and oxygen gas does not spontaneously ignite. It is necessary either to supply an activation energy or to lower the intrinsic activation energy of the system, in order to make most biochemical reactions proceed at a useful ...

  3. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    The average rate of energy captured by global photosynthesis is approximately 130 terawatts, [6] [7] [8] which is about eight times the total power consumption of human civilization. [9] Photosynthetic organisms also convert around 100–115 billion tons (91–104 Pg petagrams , or billions of metric tons), of carbon into biomass per year.

  4. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    Light-dependent reactions of photosynthesis at the thylakoid membrane. Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons.

  5. Anabolism - Wikipedia

    en.wikipedia.org/wiki/Anabolism

    It uses the energy produced from the light-driven reactions of photosynthesis, and creates the precursors to these large molecules via carbon assimilation in the photosynthetic carbon reduction cycle, a.k.a. the Calvin cycle. [10] Amino acid biosynthesis from intermediates of glycolysis and the citric acid cycle.

  6. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    Reaction centers are present in all green plants, algae, and many bacteria.A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.

  7. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    An uncoupling protein known as thermogenin is expressed in some cell types and is a channel that can transport protons. When this protein is active in the inner membrane it short circuits the coupling between the electron transport chain and ATP synthesis. The potential energy from the proton gradient is not used to make ATP but generates heat.

  8. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The cyclic light-dependent reactions occur only when the sole photosystem being used is photosystem I. Photosystem I excites electrons which then cycle from the transport protein, ferredoxin (Fd), to the cytochrome complex, b 6 f, to another transport protein, plastocyanin (Pc), and back to photosystem I. A proton gradient is created across the ...

  9. Chloroplast - Wikipedia

    en.wikipedia.org/wiki/Chloroplast

    [18] [22] [73] These genes code for a variety of things, mostly to do with the protein pipeline and photosynthesis. As in prokaryotes, genes in chloroplast DNA are organized into operons. [22] Unlike prokaryotic DNA molecules, chloroplast DNA molecules contain introns (plant mitochondrial DNAs do too, but not human mtDNAs). [88]