Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are
different plot types (functions, parametric, polar) highly configurable visual settings (plot line, axes, grid) export to bitmap format (BMP and PNG) and to Scalable Vector Graphics (SVG) save/load complete session in readable XML format; trace mode: cross-hair following plot, coordinates shown in the status bar; zooming support
The connection with Green's theorem can be understood in terms of integration in polar coordinates: in polar coordinates, area is computed by the integral (()), where the form being integrated is quadratic in r, meaning that the rate at which area changes with respect to change in angle varies quadratically with the radius.
Archimedean spiral represented on a polar graph The Archimedean spiral has the property that any ray from the origin intersects successive turnings of the spiral in points with a constant separation distance (equal to 2 πb if θ is measured in radians ), hence the name "arithmetic spiral".
Log-polar coordinates in the plane consist of a pair of real numbers (ρ,θ), where ρ is the logarithm of the distance between a given point and the origin and θ is the angle between a line of reference (the x-axis) and the line through the origin and the point.
A third choice is the Gaussian polar chart, which correctly represents radial distances, but distorts transverse distances and angles. There are other possible charts; the article on spherically symmetric spacetime describes a coordinate system with intuitively appealing features for studying infalling matter.
Conversely, the polar line (or polar) of a point Q in a circle C is the line L such that its closest point P to the center of the circle is the inversion of Q in C. If a point A lies on the polar line q of another point Q, then Q lies on the polar line a of A. More generally, the polars of all the points on the line q must pass through its pole Q.