Search results
Results from the WOW.Com Content Network
[C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92. [ W ] Wenninger, 1974, has 119 figures: 1–5 for the Platonic solids, 6–18 for the Archimedean solids, 19–66 for stellated forms including the 4 regular nonconvex polyhedra, and ended ...
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
There is a third topological polyhedral figure with 5 faces, degenerate as a polyhedron: it exists as a spherical tiling of digon faces, called a pentagonal hosohedron with Schläfli symbol {2,5}. It has 2 (antipodal point) vertices, 5 edges, and 5 digonal faces.
Blue mirror lines are drawn through vertices and edges. Gyration orders are given in the center. The regular pentagon has Dih 5 symmetry, order 10. Since 5 is a prime number there is one subgroup with dihedral symmetry: Dih 1, and 2 cyclic group symmetries: Z 5, and Z 1. These 4 symmetries can be seen in 4 distinct symmetries on the pentagon.
Edge, a 1-dimensional element; Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and ...
At each vertex of the solid, the total, among the adjacent faces, of the angles between their respective adjacent sides must be strictly less than 360°. The amount less than 360° is called an angle defect. Regular polygons of six or more sides have only angles of 120° or more, so the common face must be the triangle, square, or pentagon. For ...
where φ = 1 + √ 5 / 2 is the golden ratio. Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = √ 8φ+7 / 2 = √ 11+4 √ 5 / 2 ≈ 2.233.
The skeleton of the tetrahedron (comprising the vertices and edges) forms a graph, with 4 vertices, and 6 edges. It is a special case of the complete graph, K 4, and wheel graph, W 4. [48] It is one of 5 Platonic graphs, each a skeleton of its Platonic solid.