Search results
Results from the WOW.Com Content Network
In microeconomics, joint product pricing is the firm's problem of choosing prices for joint products, which are two or more products produced from the same process or operation, each considered to be of value. Pricing for joint products is more complex than pricing for a single product. To begin with, there are two demand curves.
The joint distribution encodes the marginal distributions, i.e. the distributions of each of the individual random variables and the conditional probability distributions, which deal with how the outputs of one random variable are distributed when given information on the outputs of the other random variable(s).
Joint and marginal distributions of a pair of discrete random variables, X and Y, dependent, thus having nonzero mutual information I(X; Y). The values of the joint distribution are in the 3×4 rectangle; the values of the marginal distributions are along the right and bottom margins.
The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...
The squared Mahalanobis distance () is decomposed into a sum of k terms, each term being a product of three meaningful components. [6] Note that in the case when k = 1 {\displaystyle k=1} , the distribution reduces to a univariate normal distribution and the Mahalanobis distance reduces to the absolute value of the standard score .
The distribution of the product of correlated non-central normal samples was derived by Cui et al. [11] and takes the form of an infinite series of modified Bessel functions of the first kind. Moments of product of correlated central normal samples. For a central normal distribution N(0,1) the moments are
In practice, the sum–product algorithm is used for statistical inference, whereby (,, …,) is a joint distribution or a joint likelihood function, and the factorization depends on the conditional independencies among the variables.
The joint information is equal to the mutual information plus the sum of all the marginal information (negative of the marginal entropies) for each particle coordinate. Boltzmann's assumption amounts to ignoring the mutual information in the calculation of entropy, which yields the thermodynamic entropy (divided by the Boltzmann constant).