Search results
Results from the WOW.Com Content Network
122 is a nontotient since there is no integer with exactly 122 coprimes below it. Nor is there an integer with exactly 122 integers with common factors below it, making 122 a noncototient. 122 is a semiprime. φ(122) = φ(σ(122)). [1]
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" and "1" . A binary number may also refer to a rational number that has a finite representation in the binary numeral system, that is, the quotient of an ...
This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.
For example, decimal 365 (10) or senary 1 405 (6) corresponds to binary 1 0110 1101 (2) (nine bits) and to ternary 111 112 (3) (six digits). However, they are still far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary (base 9) and septemvigesimal (base 27).
Each digit has a value of 0, 1, or 2. A number can have many skew binary representations. For example, a decimal number 15 can be written as 1000, 201 and 122. Each number can be written uniquely in skew binary canonical form where there is only at most one instance of the digit 2, which must be the least significant nonzero digit. In this case ...
The unary numeral system is the simplest numeral system to represent natural numbers: [1] to represent a number N, a symbol representing 1 is repeated N times. [2]In the unary system, the number 0 (zero) is represented by the empty string, that is, the absence of a symbol.
In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.
The first pernicious number is 3, since 3 = 11 2 and 1 + 1 = 2, which is a prime. The next pernicious number is 5, since 5 = 101 2 , followed by 6 (110 2 ), 7 (111 2 ) and 9 (1001 2 ). [ 2 ] The sequence of pernicious numbers begins