Search results
Results from the WOW.Com Content Network
The smallest number bigger than every finite number with the following property: there is a formula () in the language of first-order set-theory (as presented in the definition of ) with less than a googol symbols and as its only free variable such that: (a) there is a variable assignment assigning to such that ([()],), and (b) for any variable ...
The naming procedure for large numbers is based on taking the number n occurring in 10 3n+3 (short scale) or 10 6n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 10 3·999+3 = 10 3000 (short scale) or 10 6·999 = 10 5994 (long scale
COMMAND. ACTION. Ctrl/⌘ + C. Select/highlight the text you want to copy, and then press this key combo. Ctrl/⌘ + F. Opens a search box to find a specific word, phrase, or figure on the page
Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics. To put in perspective the size of a googol, the mass of an electron, just under 10 −30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [ 5 ]
Sagan gave an example that if the entire volume of the observable universe is filled with fine dust particles roughly 1.5 micrometers in size (0.0015 millimeters), then the number of different combinations in which the particles could be arranged and numbered would be about one googolplex. [8] [9]
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Graham's number was used by Graham in conversations with popular science writer Martin Gardner as a simplified explanation of the upper bounds of the problem he was working on. In 1977, Gardner described the number in Scientific American, introducing it to the general public. At the time of its introduction, it was the largest specific positive ...