Search results
Results from the WOW.Com Content Network
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. [1] Although it is often studied in the model organism E. coli, other bacteria show many similarities. [2] Replication is bi-directional and originates at a single origin of replication (OriC). [3]
The origin of replication (also called the replication origin) is a particular sequence in a genome at which replication is initiated. [1] Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full ...
Meister's finding is the first direct evidence of replication factory model. Subsequent research has shown that DNA helicases form dimers in many eukaryotic cells and bacterial replication machineries stay in single intranuclear location during DNA synthesis. [49] Replication Factories Disentangle Sister Chromatids.
In bacteria, there is one general RNA transcription factor known as a sigma factor. RNA polymerase core enzyme binds to the bacterial general transcription (sigma) factor to form RNA polymerase holoenzyme and then binds to a promoter. [6] (RNA polymerase is called a holoenzyme when sigma subunit is attached to the core enzyme which is consist ...
The bacteria containing the plasmids can generate millions of copies of the vector within the bacteria in hours, and the amplified vectors can be extracted from the bacteria for further manipulation. Plasmids may be used specifically as transcription vectors and such plasmids may lack crucial sequences for protein expression.
A licensing factor is a protein or complex of proteins that allows an origin of replication to begin DNA replication at that site. Licensing factors primarily occur in eukaryotic cells, since bacteria use simpler systems to initiate replication. However, many archaea use homologues of eukaryotic licensing factors to initiate replication. [1]
Molecular cloning takes advantage of the fact that the chemical structure of DNA is fundamentally the same in all living organisms. Therefore, if any segment of DNA from any organism is inserted into a DNA segment containing the molecular sequences required for DNA replication, and the resulting recombinant DNA is introduced into the organism from which the replication sequences were obtained ...