enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The function f is variously called an objective function, criterion function, loss function, cost function (minimization), [8] utility function or fitness function (maximization), or, in certain fields, an energy function or energy functional. A feasible solution that minimizes (or maximizes) the objective function is called an optimal solution.

  3. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.

  4. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  5. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    f : ℝ n → ℝ is the objective function to be minimized over the n-variable vector x, g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem.

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The goal is to maximize the value of the objective function subject to the constraints. A solution is a vector (a list) of n values that achieves the maximum value for the objective function. In the dual problem, the objective function is a linear combination of the m values that are the limits in the m constraints from

  8. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...

  9. Lexicographic max-min optimization - Wikipedia

    en.wikipedia.org/wiki/Lexicographic_max-min...

    Lexicographic max-min optimization (also called lexmaxmin or leximin or leximax or lexicographic max-ordering optimization) is a kind of multi-objective optimization.In general, multi-objective optimization deals with optimization problems with two or more objective functions to be optimized simultaneously.