enow.com Web Search

  1. Ad

    related to: solving for domain and range

Search results

  1. Results from the WOW.Com Content Network
  2. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...

  3. Range of a function - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_function

    is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.

  4. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.

  5. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    For example, when extending the domain of the square root function, along a path of complex numbers with positive imaginary parts, one gets i for the square root of −1; while, when extending through complex numbers with negative imaginary parts, one gets −i. There are generally two ways of solving the problem.

  6. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    More generally, evaluating at each element of a given subset of its domain produces a set, called the "image of under (or through) ". Similarly, the inverse image (or preimage ) of a given subset B {\displaystyle B} of the codomain Y {\displaystyle Y} is the set of all elements of X {\displaystyle X} that map to a member of B . {\displaystyle B.}

  7. Codomain - Wikipedia

    en.wikipedia.org/wiki/Codomain

    A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. [1] The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the image of f. The image of a function is a subset of its codomain so it might not coincide with it.

  8. Function space - Wikipedia

    en.wikipedia.org/wiki/Function_space

    Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.

  9. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The domain of f is the set of complex numbers such that (). Every rational function can be naturally extended to a function whose domain and range are the whole Riemann sphere (complex projective line). Rational functions are representative examples of meromorphic functions. [6]

  1. Ad

    related to: solving for domain and range