enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The importance of Stokes' law is illustrated by the fact that it played a critical role in the research leading to at least three Nobel Prizes. [5] Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity. [5]

  3. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  4. Cunningham correction factor - Wikipedia

    en.wikipedia.org/wiki/Cunningham_correction_factor

    The derivation of Stokes' law, which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at high Knudsen numbers. The Cunningham slip correction factor allows predicting the drag force on a particle moving a fluid with Knudsen number between the continuum regime and free molecular flow.

  5. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The expression for the drag force given by equation is called Stokes' law. When the value of C d {\displaystyle C_{d}} is substituted in the equation ( 5 ), we obtain the expression for terminal speed of a spherical object moving under creeping flow conditions: [ 11 ]

  6. Stokes formula - Wikipedia

    en.wikipedia.org/wiki/Stokes_formula

    Stokes' formula can refer to: Stokes' law for friction force in a viscous fluid. Stokes' law (sound attenuation) law describing attenuation of sound in Newtonian liquids.

  7. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    In addition, given the very large memory necessary, the integration of the solution in time must be done by an explicit method. This means that in order to be accurate, the integration, for most discretization methods, must be done with a time step, Δ t {\displaystyle \Delta t} , small enough such that a fluid particle moves only a fraction of ...

  8. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Stokes derived the drag around a sphere at very low Reynolds numbers, the result of which is called Stokes' law. [30] In the limit of high Reynolds numbers, the Navier–Stokes equations approach the inviscid Euler equations, of which the potential-flow solutions considered by d'Alembert are solutions. However, all experiments at high Reynolds ...

  9. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).