Search results
Results from the WOW.Com Content Network
X-ray structure of the ERK2 MAP kinase in its active form. Phosphorylated residues are displayed in red. Rendering based on pdb entry 2ERK. Mitogen-activated protein kinases are catalytically inactive in their base form. In order to become active, they require (potentially multiple) phosphorylation events in their activation loops.
Mitogen Activated Protein (MAP) kinase kinase kinase (MAPKKK, [1] MKKK, [2] M3K, [3] or, MAP3K [4]) is a serine/threonine-specific protein kinase which acts upon MAP kinase kinase. Subsequently, MAP kinase kinase activates MAP kinase. Several types of MAPKKK can exist but are mainly characterized by the MAP kinases they activate.
The activators of p38 (MKK3 and MKK6), JNK (MKK4 and MKK7), and ERK (MEK1 and MEK2) define independent MAP kinase signal transduction pathways. [1] The acronym MEK derives from M APK/ E RK K inase. [ 2 ]
This biochemistry article is a stub. You can help Wikipedia by expanding it.
The protein encoded by this gene is a member of the mitogen-activated protein kinase (MAP kinase) family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals.
The protein encoded by this gene is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development.
26395 Ensembl ENSG00000169032 ENSMUSG00000004936 UniProt Q02750 P31938 RefSeq (mRNA) NM_002755 NM_008927 RefSeq (protein) NP_002746 NP_032953 Location (UCSC) Chr 15: 66.39 – 66.49 Mb Chr 9: 64.09 – 64.16 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse Dual specificity mitogen-activated protein kinase kinase 1 is an enzyme that in humans is encoded by the MAP2K1 gene. Function The ...
Oxidative stress is the most powerfully specific stress activating p38 MAPK. [7] Abnormal activity (higher or lower than physiological) of p38 has been implicated in pathological stresses in several tissues, that include neuronal, [8] [9] [10] bone, [11] lung, [12] cardiac and skeletal muscle, [13] [14] red blood cells, [15] and fetal tissues. [16]