enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tip-speed ratio - Wikipedia

    en.wikipedia.org/wiki/Tip-speed_ratio

    The tip-speed ratio, λ, or TSR for wind turbines is the ratio between the tangential speed of the tip of a blade and the actual speed of the wind, v. The tip-speed ratio is related to efficiency, with the optimum varying with blade design. [1] Higher tip speeds result in higher noise levels and require stronger blades due to larger centrifugal ...

  3. Wind turbine design - Wikipedia

    en.wikipedia.org/wiki/Wind_turbine_design

    An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub

  4. IEC 61400 - Wikipedia

    en.wikipedia.org/wiki/IEC_61400

    IEC TS 61400-29:2023 Marking and lighting of wind turbines; IEC TS 61400-30:2023 Safety of wind turbine generators - General principles for design; IEC TS 61400-31:2023 Siting risk assessment; IEC 61400-50:2022 Wind measurement - Overview; IEC 61400-50-1:2022 Wind measurement - Application of meteorological mast, nacelle and spinner mounted ...

  5. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    However, very high tip speeds also increase the drag on the blades, decreasing power production. Balancing these factors is what leads to most modern horizontal-axis wind turbines running at a tip speed ratio around 9. In addition, wind turbines usually limit the tip speed to around 80-90m/s due to leading edge erosion and high noise levels.

  6. Variable speed wind turbine - Wikipedia

    en.wikipedia.org/wiki/Variable_speed_wind_turbine

    A variable speed wind turbine is one which is specifically designed to operate over a wide range of rotor speeds. It is in direct contrast to fixed speed wind turbine where the rotor speed is approximately constant. The reason to vary the rotor speed is to capture the maximum aerodynamic power in the wind, as the wind speed varies.

  7. Wind profile power law - Wikipedia

    en.wikipedia.org/wiki/Wind_profile_power_law

    The power law is often used in wind power assessments [4] [5] where wind speeds at the height of a turbine ( 50 metres) must be estimated from near surface wind observations (~10 metres), or where wind speed data at various heights must be adjusted to a standard height [6] prior to use.

  8. Rotor solidity - Wikipedia

    en.wikipedia.org/wiki/Rotor_solidity

    Rotor solidity is a dimensionless quantity used in design and analysis of rotorcraft, propellers and wind turbines.Rotor solidity is a function of the aspect ratio and number of blades in the rotor and is widely used as a parameter for ensuring geometric similarity in rotorcraft experiments.

  9. Wind resource assessment - Wikipedia

    en.wikipedia.org/wiki/Wind_resource_assessment

    The hub heights of modern wind turbines are usually 80 m or greater, but developers are often reluctant to install towers taller than 60m due to the need for FAA permitting in the US, and costs. The power law and log law vertical shear profiles are the most common methods of extrapolating measured wind speed to hub height.