enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: [16] Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns.

  3. Bayesian approaches to brain function - Wikipedia

    en.wikipedia.org/wiki/Bayesian_approaches_to...

    This field of study has its historical roots in numerous disciplines including machine learning, experimental psychology and Bayesian statistics.As early as the 1860s, with the work of Hermann Helmholtz in experimental psychology, the brain's ability to extract perceptual information from sensory data was modeled in terms of probabilistic estimation.

  4. Influence diagram - Wikipedia

    en.wikipedia.org/wiki/Influence_diagram

    An influence diagram (ID) (also called a relevance diagram, decision diagram or a decision network) is a compact graphical and mathematical representation of a decision situation. It is a generalization of a Bayesian network , in which not only probabilistic inference problems but also decision making problems (following the maximum expected ...

  5. Bayesian cognitive science - Wikipedia

    en.wikipedia.org/wiki/Bayesian_cognitive_science

    Bayesian cognitive science, also known as computational cognitive science, is an approach to cognitive science concerned with the rational analysis [1] of cognition through the use of Bayesian inference and cognitive modeling. The term "computational" refers to the computational level of analysis as put forth by David Marr. [2]

  6. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  7. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    Bayesian probability (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation [2] representing a state of knowledge [3] or as quantification of a personal belief.

  8. John K. Kruschke - Wikipedia

    en.wikipedia.org/wiki/John_K._Kruschke

    Kruschke's popular textbook, Doing Bayesian Data Analysis, [2] was notable for its accessibility and unique scaffolding of concepts. The first half of the book used the simplest type of data (i.e., dichotomous values) for presenting all the fundamental concepts of Bayesian analysis, including generalized Bayesian power analysis and sample-size planning.

  9. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    The theory of Bayesian experimental design [1] is to a certain extent based on the theory for making optimal decisions under uncertainty. The aim when designing an experiment is to maximize the expected utility of the experiment outcome.