Search results
Results from the WOW.Com Content Network
This experiment produced and received what are now called radio waves in the very high frequency range. Hertz's first radio transmitter: a capacitance loaded dipole resonator consisting of a pair of one meter copper wires with a 7.5 mm spark gap between them, ending in 30 cm zinc spheres. [14]
German physicist Heinrich Hertz in 1887 built the first experimental spark gap transmitters during his historic experiments to demonstrate the existence of electromagnetic waves predicted by James Clerk Maxwell in 1864, in which he discovered radio waves, [23] [24]: p.3-4 [25] [17]: p.19, 260, 331–332 which were called "Hertzian waves" until ...
Hertz conducts a series of experiments that validates Maxwell's theory of electromagnetic radiation and proves that it can travel through free space (radio). He demonstrates the radiation has the properties of visible light, the properties of waves (now called Transverse waves ), and discovers that the electromagnetic equations could be ...
Early experiment demonstrating refraction of microwaves by a paraffin lens by John Ambrose Fleming in 1897. After their discovery many scientists and inventors experimented with transmitting and detecting "Hertzian waves" (it would take almost 20 years for the term "radio" to be universally adopted for this type of electromagnetic radiation). [8]
At first Marconi used a transmitter to ring a bell in a receiver in his attic laboratory. He then moved his experiments out-of-doors on the family estate near Bologna, Italy, to communicate further. He replaced Hertz's vertical dipole with a vertical wire topped by a metal sheet, with an opposing terminal connected to the ground.
Like radio and microwave, infrared (IR) is reflected by metals (and also most EMR, well into the ultraviolet range). However, unlike lower-frequency radio and microwave radiation, Infrared EMR commonly interacts with dipoles present in single molecules, which change as atoms vibrate at the ends of a single chemical bond.
On 1 June 1894, after the death of Hertz, British physicist Oliver Lodge gave a memorial lecture on Hertz experiments. He set up a demonstration on the quasi optical nature of Hertzian waves (radio waves) and demonstrated their transmission at distances up to 50 meters. [7]
The Submillimeter Telescope (SMT), formerly known as the Heinrich Hertz Submillimeter Telescope, is a submillimeter wavelength radio telescope located on Mount Graham, Arizona, US. It is a 10-meter-wide parabolic dish inside a building to protect it from bad weather.