Search results
Results from the WOW.Com Content Network
The LN-3-2B is the Inertial Navigation System used in the Canadian CF-104. [12] The LN-3-13 is fitted to the Italian F-104S/CI and F-104S/CB; [13] enhanced variants of the F-104G from 1969 and onward. In the early 1980s a further upgrade led to the F-104S ASA version which kept the original LN-3; but the ASA-M version of the '90s was equipped ...
An inertial navigation system (INS; also inertial guidance system, inertial instrument) is a navigation device that uses motion sensors (accelerometers), rotation sensors and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity (direction and speed of movement) of a moving object without the ...
It is associated with simplicity; the more orthogonal the design, the fewer exceptions. This makes it easier to learn, read and write programs in a programming language [citation needed]. The meaning of an orthogonal feature is independent of context; the key parameters are symmetry and consistency (for example, a pointer is an orthogonal concept).
An accelerometer was announced that used infrared light to measure the change in distance between two micromirrors in a Fabry–Perot cavity. The proof mass is a single silicon crystal with a mass of 10–20 mg, suspended from the first mirror using flexible 1.5 μm-thick silicon nitride (Si 3 N 4) beams. The suspension allows the proof mass to ...
In computer engineering, an orthogonal instruction set is an instruction set architecture where all instruction types can use all addressing modes. It is " orthogonal " in the sense that the instruction type and the addressing mode may vary independently.
The PIGA was based on an accelerometer developed by Dr. Fritz Mueller, then of the Kreiselgeraete Company, for the LEV-3 and experimental SG-66 guidance system of the Nazi era German V2 (EMW A4) ballistic missile and was known among the German rocket scientists as the MMIA "Mueller Mechanical Integrating Accelerometer". This system used ...
An accelerometer measures proper acceleration, which is the acceleration it experiences relative to freefall and is the acceleration felt by people and objects. [2] Put another way, at any point in spacetime the equivalence principle guarantees the existence of a local inertial frame, and an accelerometer measures the acceleration relative to that frame. [4]
Map & traveler views of 1g proper-acceleration from rest for one year. Traveler spacetime for a constant-acceleration roundtrip. In relativity theory, proper acceleration [1] is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object.